ST. XAVIER'S COLLEGE, RANCHI

(An autonomous College under Ranchi University)

Proposed syllabus

For

B.Sc. (Honours) Chemistry

Under

Choice Based Credit System

w.e.f. session 2018-21

Syllabus for Generic Electives (offered to students of other discipline)

Semester I

CHEGE101	GE1: atomic structure,	Theory	Practical	Marks
	bonding, general organic chemistry & aliphatic hydrocarbons	4 Credits	2 Credits	100

Note for Examiners and Students:

1. Course evaluation will have two parts: theory of 75 marks and practical of 25 marks.

2. Theory portion will have two components- continuous assessment (CA) of 25 marks and end semester exam (ESE) of 50 marks.

3. Continuous assessment comprises of: mid-term exam, quiz/seminar/assignment and attendance.

4. Student has to secure at least 30 marks in theory (CA + ESE combined) and 10 marks in practical to pass the course.

5. Pattern for end semester exam:

(i) The end-semester question paper will consist of two sections, A and B, containing 4 questions (may contain more than one part) of 10 marks each from sections A and B.

(ii) The candidate will be required to attempt five questions in all selecting at least two questions from each section. The duration of the examination will be 3 hours.

Section A: Inorganic Chemistry-1

Atomic Structure: *Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de-Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to Atomic structure.*

What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ^2 , Schrödinger equation for hydrogen atom. Radial and angular parts of the hydogenic wavefunctions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to 1s and 2s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers m_l and m_s . Shapes of s, p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (m_s).

Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations.

(14 Lectures)

Chemical Bonding and Molecular Structure

Ionic Bonding: General characteristics of ionic bonding. Energy considerations in ionic

bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.

Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements.

Concept of resonance and resonating structures in various inorganic and organic compounds.

MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for *s*-*s*, *s*-*p* and *p*-*p* combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd period (including idea of *s*-*p* mixing) and heteronuclear diatomic molecules such as CO, NO and NO⁺. Comparison of VB and MO approaches.

(16 Lectures)

Section B: Organic Chemistry-1

Fundamentals of Organic Chemistry

Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis.

Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals.

Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Hückel's rule.

(8 Lectures)

Stereochemistry

Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). Threo and erythro; D and L; *cis - trans* nomenclature; CIP Rules: R/S (for upto 2 chiral carbon atoms) and E / Z Nomenclature (for upto two C=C systems).

(10 Lectures)

Aliphatic Hydrocarbons

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Alkanes: (Upto 5 Carbons). *Preparation:* Catalytic hydrogenation, Wurtz reaction, Kolbe's synthesis, from Grignard reagent. *Reactions:* Free radical Substitution: Halogenation.

Alkenes: (Upto 5 Carbons) *Preparation:* Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeff's rule); cis alkenes (Partial catalytic hydrogenation) and trans alkenes (Birch reduction). *Reactions:* cis-addition (alk. KMnO4) and trans -addition (bromine), Addition of HX (Markownikoff's and anti-Markownikoff's addition), Hydration, Ozonolysis, oxymecuration-demercuration, Hydroboration-oxidation.

Alkynes: (Upto 5 Carbons) *Preparation:* Acetylene from CaC₂ and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides.

Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO₄, ozonolysis and oxidation with hot alk. KMnO₄.

(12 Lectures)

Reference Books:

1. J. D. Lee: A new Concise Inorganic Chemistry, E L. B. S.

2. F. A. Cotton & G. Wilkinson: Basic Inorganic Chemistry, John Wiley.

3. Douglas, McDaniel and Alexader: Concepts and Models in Inorganic Chemistry, John Wiley.

4. James E. Huheey, *Ellen Keiter and Richard Keiter: Inorganic Chemistry: Principles of Structure and Reactivity*, Pearson Publication.

5. T. W. Graham Solomon: Organic Chemistry, John Wiley and Sons.

6. Peter Sykes: A Guide Book to Mechanism in Organic Chemistry, Orient Longman.

7. E. L. Eliel: Stereochemistry of Carbon Compounds, Tata McGraw Hill.

8. I. L. Finar: Organic Chemistry (Vol. I & II), E. L. B. S.

9. R. T. Morrison & R. N. Boyd: Organic Chemistry, Prentice Hall.

10. Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand

List of Experiments for Practical

Section A: Inorganic Chemistry - Volumetric Analysis

1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.

2. Estimation of oxalic acid by titrating it with KMnO₄.

3. Estimation of water of crystallization in Mohr's salt by titrating with KMnO₄.

4. Estimation of Fe (II) ions by titrating it with K₂Cr₂O₇ using internal indicator.

5. Estimation of Cu (II) ions iodometrically using Na₂S₂O₃.

Section B: Organic Chemistry

1. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extra elements)

2. Separation of mixtures by Chromatography: Measure the Rf value in each case (combination of two compounds to be given)

(a) Identify and separate the components of a given mixture of 2 amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography

(b) Identify and separate the sugars present in the given mixture by paper chromatography.

Reference Books:

- 1. Vogel's Qualitative Inorganic Analysis, A.I. Vogel, Prentice Hall, 7th Edition.
- 2. Vogel's Quantitative Chemical Analysis, A.I. Vogel, Prentice Hall, 6th Edition.
- 3. Textbook of Practical Organic Chemistry, A.I. Vogel, Prentice Hall, 5th edition.
- 4. Practical Organic Chemistry, F. G. Mann. & B. C. Saunders, Orient Longman, 1960.

Semester II

CHEGE202	GE2: chemical energetics, equilibria & functional organic chemistry-i	Theory	Practical	Marks
		4 Credits	2 Credits	100

Note for Examiners and Students:

1. Course evaluation will have two parts: theory of 75 marks and practical of 25 marks.

2. Theory portion will have two components- continuous assessment (CA) of 25 marks and end semester exam (ESE) of 50 marks.

3. Continuous assessment comprises of: mid-term exam, quiz/seminar/assignment and attendance.

4. Student has to secure at least 30 marks in theory (CA + ESE combined) and 10 marks in practical to pass the course.

- 5. Pattern for end semester exam:
 - (i) The end-semester question paper will consist of two sections, A and B, containing 4 questions (may contain more than one part) of 10 marks each from sections A and B.
 - (ii) The candidate will be required to attempt five questions in all selecting at least two questions from each section. The duration of the examination will be 3 hours.

Section A: Physical Chemistry-1

Chemical Energetics

Review of thermodynamics and the Laws of Thermodynamics.

Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. Variation of enthalpy of a reaction with temperature – Kirchhoff's equation.

Statement of Third Law of thermodynamics and calculation of absolute entropies of substances.

(10 Lectures)

Chemical Equilibrium:

Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between G and G° , Le Chatelier's principle. Relationships between K_{p} , K_{c} and K_{x} for reactions involving ideal gases.

Ionic Equilibria:

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle.

(12 Lectures)

Section B: Organic Chemistry-2

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Aromatic hydrocarbons

Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid.

Reactions: (Case benzene): Electrophilic substitution: nitration, halogenation and sulphonation. Friedel-Craft's reaction (alkylation and acylation) (upto 4 carbons on benzene). Side chain oxidation of alkyl benzenes (upto 4 carbons on benzene).

(8 Lectures)

Alkyl and Aryl Halides

Alkyl Halides (Upto 5 Carbons) Types of Nucleophilic Substitution (S_N1 , S_N2 and S_Ni) reactions.

Preparation: from alkenes and alcohols.

Reactions: hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation. Williamson's ether synthesis: Elimination vs substitution.

Aryl Halides *Preparation:* (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions.

Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by –OH group) and effect of nitro substituent. Benzyne Mechanism: KNH₂/NH₃ (or NaNH₂/NH₃).

Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides.

(8 Lectures)

Alcohols, Phenols and Ethers (Upto 5 Carbons)

Alcohols: *Preparation:* Preparation of 1°, 2° and 3° alcohols: using Grignard reagent, Ester hydrolysis, Reduction of aldehydes, ketones, carboxylic acid and esters.

Reactions: With sodium, HX (Lucas test), esterification, oxidation (with PCC, alk. KMnO₄,

acidic dichromate, conc. HNO₃). Oppeneauer oxidation *Diols:* (Upto 6 Carbons) oxidation of diols. Pinacol-Pinacolone rearrangement.

Phenols: (Phenol case) *Preparation:* Cumene hydroperoxide method, from diazonium salts. *Reactions:* Electrophilic substitution: Nitration, halogenation and sulphonation. Reimer-Tiemann Reaction, Gattermann-Koch Reaction, Houben–Hoesch Condensation, Schotten – Baumann reaction.

Ethers (aliphatic and aromatic): Cleavage of ethers with HI.

Aldehydes and ketones (aliphatic and aromatic): (Formaldehye, acetaldehyde, acetone and benzaldehyde)

Preparation: from acid chlorides and from nitriles.

Reactions – Reaction with HCN, ROH, NaHSO₃, NH₂-G derivatives. Iodoform test. Aldol Condensation, Cannizzaro's reaction, Wittig reaction, Benzoin condensation. Clemensen reduction and Wolff Kishner reduction. Meerwein-Pondorff Verley reduction.

(14 Lectures)

Reference Books:

1. T. W. Graham Solomons: Organic Chemistry, John Wiley and Sons.

2. Peter Sykes: A Guide Book to Mechanism in Organic Chemistry, Orient Longman.

- 3. I.L. Finar: Organic Chemistry (Vol. I & II), E. L. B. S.
- 4. R. T. Morrison & R. N. Boyd: Organic Chemistry, Prentice Hall.
- 5. Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand.
- 6. G. M. Barrow: *Physical Chemistry* Tata McGraw-Hill (2007).
- 7. G. W. Castellan: *Physical Chemistry* 4th Edn. Narosa (2004).

8. J. C. Kotz, P. M. Treichel & J. R. Townsend: *General Chemistry* Cengage Lening India Pvt. Ltd., New Delhi (2009).

9. B. H. Mahan: University Chemistry 3rd Ed. Narosa (1998).

10. R. H. Petrucci: General Chemistry 5th Ed. Macmillan Publishing Co.: New York (1985).

List of Experiments for Practical

Section A: Physical Chemistry

Thermochemistry

- 1. Determination of heat capacity of calorimeter for different volumes.
- 2. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- 3. Determination of enthalpy of ionization of acetic acid.
- 4. Determination of integral enthalpy of solution of salts (KNO₃, NH₄Cl).
- 5. Determination of enthalpy of hydration of copper sulphate.
- 6. Study of the solubility of benzoic acid in water and determination of H.

Ionic equilibria

рΗ

measurements

- a) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.
- b) Preparation of buffer solutions:
- (i) Sodium acetate-acetic acid

(ii) Ammonium chloride-ammonium hydroxide

Measurement of the pH of buffer solutions and comparison of the values with theoretical values.

Section B: Organic Chemistry

- 1. Purification of organic compounds by crystallization (from water and alcohol) and distillation.
- 2. Criteria of Purity: Determination of melting and boiling points.
- 3. Preparations: Mechanism of various reactions involved to be discussed. Recrystallisation, determination of melting point and calculation of quantitative yields to be done.
- (a) Bromination of Phenol/Aniline
- (b) Benzoylation of amines/phenols
- (c) Oxime and 2,4 dinitrophenylhydrazone of aldehyde/ketone

Reference Books

- 1. A.I. Vogel: Textbook of Practical Organic Chemistry, 5th edition, Prentice-Hall.
- 2. F. G. Mann & B. C. Saunders, Practical Organic Chemistry, Orient Longman (1960).
- 3. B.D. Khosla, Senior Practical Physical Chemistry, R. Chand & Co.

CHEGE303	GE3: solutions, phase equilibrium, conductance,	Theory	Practical	Marks
	electrochemistry & functional group organic chemistry-ii	4 Credits	2 Credits	100

Note for Examiners and Students:

1. Course evaluation will have two parts: theory of 75 marks and practical of 25 marks.

2. Theory portion will have two components- continuous assessment (CA) of 25 marks and end semester exam(ESE) of 50 marks.

3. Continuous assessment comprises of: mid-term exam, quiz/seminar/assignment and attendance.

4. Student has to secure at least 30 marks in theory (CA + ESE combined) and 10 marks in practical to pass the course.

5. Pattern for end semester exam:

(i) The end-semester question paper will consist of two sections, A and B, containing 4 questions (may contain more than one part) of 10 marks each from sections A and B.

(ii) The candidate will be required to attempt five questions in all selecting at least two questions from each section. The duration of the examination will be 3 hours.

Section A: Physical Chemistry-2

Solutions

Thermodynamics of ideal solutions: Ideal solutions and Raoult's law, deviations from Raoult's law – non-ideal solutions. Vapour pressure-composition and temperature-composition curves of ideal and non-ideal solutions. Distillation of solutions. Lever rule. Azeotropes.

Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. Immiscibility of liquids- Principle of steam distillation. Nernst distribution law and its applications, solvent extraction.

(8 Lectures)

Phase Equilibrium

Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius – Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver, FeCl₃-H₂O and Na-K only).

Conductance

Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions.

Transference number and its experimental determination using Hittorf and Moving boundary methods. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte, solubility and solubility products of sparingly soluble salts, ionic product of water, hydrolysis constant of a salt. Conductometric titrations (only acid-base).

(6 Lectures)

Electrochemistry

Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Types of electrodes. Standard electrode potential. Electrochemical series. Thermodynamics of a reversible cell, calculation of thermodynamic properties: G, H and S from EMF data.

Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge.

pH determination using hydrogen electrode and quinhydrone electrode.

Potentiometric titrations -qualitative treatment (acid-base and oxidation-reduction only).

(8 Lectures)

Section B: Organic Chemistry-3

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Carboxylic acids and their derivatives

Carboxylic acids (aliphatic and aromatic)

Preparation: Acidic and Alkaline hydrolysis of esters.

Reactions: Hell – Vohlard - Zelinsky Reaction.

Carboxylic acid derivatives (aliphatic): (Upto 5 carbons)

Preparation: Acid chlorides, Anhydrides, Esters and Amides from acids and their interconversion.

Reactions: Comparative study of nucleophilicity of acyl derivatives. Reformatsky Reaction, Perkin condensation.

Amines and Diazonium Salts

Amines (Aliphatic and Aromatic): (Upto 5 carbons)

Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, Hofmann Bromamide reaction.

Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test, Hinsberg test, with HNO₂, Schotten – Baumann Reaction. Electrophilic substitution (case aniline): nitration, bromination, sulphonation.

Diazonium salts: Preparation: from aromatic amines.

Reactions: conversion to benzene, phenol, dyes.

(6 Lectures)

Amino Acids, Peptides and Proteins:

Preparation of Amino Acids: Strecker synthesis using Gabriel's phthalimide synthesis. Zwitterion, Isoelectric point and Electrophoresis.

Reactions of Amino acids: ester of –COOH group, acetylation of $-NH_2$ group, complexation with Cu^{2+} ions, ninhydrin test.

Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins.

Determination of Primary structure of Peptides by degradation Edmann degradation (N-terminal) and C-terminal (thiohydantoin and with carboxypeptidase enzyme). Synthesis of simple peptides (upto dipeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C-activating groups and Merrifield solid-phase synthesis.

(10 Lectures)

Carbohydrates: Classification, and General Properties, Glucose and Fructose (open chain and cyclic structure), Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disacharrides (sucrose, cellobiose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation.

(8 Lectures)

Reference Books: 1. G. M. Barrow: *Physical Chemistry* Tata McGraw-Hill (2007).

(6 Lectures)

2. G. W. Castellan: *Physical Chemistry* 4th Ed. Narosa (2004).

- 3. J. C. Kotz, P. M. Treichel, J. R. Townsend, *General Chemistry*, Cengage Learning India Pvt. Ltd.: New Delhi (2009).
- 4. B. H. Mahan: University Chemistry, 3rd Edn. Narosa (1998).

5. R. H. Petrucci, General Chemistry, 5th Edn., Macmillan Publishing Co.: New York (1985).

6. Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

7. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

8. Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

9. Nelson, D. L. & Cox, M. M. *Lehninger's Principles of Bioch*emistry 7th Ed., W. H. Freeman. 10. Berg, J. M., Tymoczko, J. L. & Stryer, L. *Biochemistry* 7th Ed., W. H. Freeman

List of Experiments for Practical

Section A: Physical Chemistry

Distribution

Study of the equilibrium of one of the following reactions by the distribution method:

 $I_2(aq) + I^{-}(aq) \rightleftharpoons I_3(aq)$ $Cu^{2+}(aq) + xNH_2(aq) \rightleftharpoons [Cu(NH_3)_x]^{2+}$

Phase equilibria

a) Construction of the phase diagram of a binary system (simple eutectic) using cooling curves.

b) Determination of the critical solution temperature and composition of the phenol water system and study of the effect of impurities on it.

c) Study of the variation of mutual solubility temperature with concentration for the phenol water system and determination of the critical solubility temperature.

Conductance

- IV. Determination of cell constant
- V. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
- VI. Perform the following conductometric titrations:
 - v. Strong acid vs. strong base
 - vi. Weak acid vs. strong base

Potentiometry

Perform the following potentiometric titrations:

- v. Strong acid vs. strong base
- vi. Weak acid vs. strong base
- vii. Potassium dichromate vs. Mohr's salt

Section B: Organic Chemistry

I Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative.

II Separation of amino acids by paper chromatography

- 1. Determination of the concentration of glycine solution by formylation method.
- 2. Titration curve of glycine
- 3. Action of salivary amylase on starch
- 4. Effect of temperature on the action of salivary amylase on starch.
- 5. Determination of the saponification value of an oil/fat.
- 6. Determination of the iodine value of an oil/fat
- 7. Differentiation between a reducing/nonreducing sugar.
- 8. Extraction of DNA from onion/ cauliflower

Reference Books:

- A.I. Vogel: Textbook of Practical Organic Chemistry, Prentice Hall, 5th Edn.
- F. G. Mann & B. C. Saunders: Practical Organic Chemistry, Orient Longman, 1960.
- B.D. Khosla: Senior Practical Physical Chemistry, R. Chand & Co.
- Ahluwalia, V.K. & Aggarwal, R. *Comprehensive Practical Organic Chemistry*, Universities Press.

Semester IV

CHEGE404	GE4: Chemistry of s- and p- block elements, states of matter & chemical kinetics	Theory	Practical	Marks
		4 Credits	2 Credits	100

Note for Examiners and Students:

1. Course evaluation will have two parts: theory of 75 marks and practical of 25 marks.

2. Theory portion will have two components- continuous assessment (CA) of 25 marks and end semester exam(ESE) of 50 marks.

3. Continuous assessment comprises of: mid-term exam, quiz/seminar/assignment and attendance.

4. Student has to secure at least 30 marks in theory (CA + ESE combined) and 10 marks in practical to pass the course.

5. Pattern for end semester exam:

(i) The end-semester question paper will consist of two sections, A and B, containing 4 questions (may contain more than one part) of 10 marks each from sections A and B.

(ii) The candidate will be required to attempt five questions in all selecting at least two questions from each section. The duration of the examination will be 3 hours.

Section – A: Inorganic Chemistry

General Principles of Metallurgy

Chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal oxides using carbon as reducing agent.

Hydrometallurgy, Methods of purification of metals (Al, Pb, Ti, Fe, Cu, Ni, Zn): electrolytic, oxidative refining, Kroll process, Parting process, van Arkel-de Boer process and Mond's process.

(4 Lectures)

s- and p-Block Elements

Periodicity in *s*- and *p*-block elements with respect to electronic configuration, atomic and ionic size, ionization enthalpy, electronegativity (Pauling, Mulliken, and Alfred-Rochow scales). Allotropy in C, S, and P.

Oxidation states with reference to elements in unusual and rare oxidation states like carbides and nitrides), inert pair effect, diagonal relationship and anomalous behaviour of first member of

each group.

Compounds of *s*- and *p*-Block Elements

Hydrides and their classification (ionic, covalent and interstitial), structure and properties with respect to stability of hydrides of p- block elements.

Concept of multicentre bonding (diborane).

Structure, bonding and their important properties like oxidation/reduction, acidic/basic nature of the following compounds and their applications in industrial, organic and environmental chemistry.

Hydrides of nitrogen (NH₃, N₂H₄, N₃H, NH₂OH)

Oxoacids of P, S and Cl.

Halides and oxohalides: PCl₃, PCl₅, SOCl₂ and SO₂Cl₂

(26 Lectures)

Section B: Physical Chemistry-3 (30 Lectures)

Kinetic Theory of Gases

Postulates of Kinetic Theory of Gases and derivation of the kinetic gas equation.

Deviation of real gases from ideal behaviour, compressibility factor, causes of deviation. van der Waals equation of state for real gases. Boyle temperature (derivation not required). Critical phenomena, critical constants and their calculation from van der Waals equation. Andrews isotherms of CO₂.

Maxwell Boltzmann distribution laws of molecular velocities and molecular energies (graphic representation – derivation not required) and their importance.

Temperature dependence of these distributions. Most probable, average and root mean square velocities (no derivation). Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules. Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only).

(8 Lectures)

Liquids

Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only)

(4 Lectures)

Solids

Forms of solids. Symmetry elements, unit cells, crystal systems, Bravais lattice types and identification of lattice planes. Laws of Crystallography - Law of constancy of interfacial angles, Law of rational indices. Miller indices. X–Ray diffraction by crystals, Bragg's law. Structures of NaCl, KCl and CsCl (qualitative treatment only). Defects in crystals. Glasses and liquid crystals. (8 Lectures)

Chemical Kinetics

The concept of reaction rates. Effect of temperature, pressure, catalyst and other factors on reaction rates. Order and molecularity of a reaction. Derivation of integrated rate equations for zero, first and second order reactions (both for equal and unequal concentrations of reactants). Half–life of a reaction. General methods for determination of order of a reaction. Concept of activation energy and its calculation from Arrhenius equation.

Theories of Reaction Rates: Collision theory and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only).

(10 Lectures)

Reference Books:

- 1. G. M. Barrow: *Physical Chemistry* Tata McGraw-Hill (2007).
- 2. G. W. Castellan: *Physical Chemistry* 4th Edn. Narosa (2004).
- 3. J. C. Kotz, P. M. Treichel & J. R. Townsend: *General Chemistry* Cengage Lening India Pvt. Ltd., New Delhi (2009).
- 4. B. H. Mahan: University Chemistry 3rd Ed. Narosa (1998).
- 5. R. H. Petrucci: General Chemistry 5th Ed. Macmillan Publishing Co.: New York (1985).
- 6. J. D. Lee: A New Concise Inorganic Chemistry, E.L.B.S.
- 7. F.A. Cotton & G. Wilkinson: Basic Inorganic Chemistry, John Wiley.
- 8. D. F. Shriver and P. W. Atkins: Inorganic Chemistry, Oxford University Press.
- 9. Gary Wulfsberg: Inorganic Chemistry, Viva Books Pvt. Ltd.

List of Experiments for Practical

Section A: Inorganic Chemistry

Semi-micro qualitative analysis using H2S of mixtures- not more than four ionic species (two anions and two cations and excluding insoluble salts) out of the following:

Cations : NH⁴⁺, Pb²⁺, Ag⁺, Bi³⁺, Cu²⁺, Cd²⁺, Sn²⁺, Fe³⁺, Al³⁺, Co²⁺, Cr³⁺, Ni²⁺, Mn²⁺, Zn²⁺, Ba²⁺, Sr²⁺, Ca²⁺, Anions : CO₃²⁻, S²⁻, SO²⁻, S₂O₃²⁻, NO₃⁻, CH₃COO⁻, Cl⁻, Br⁻, I⁻, NO₃⁻, SO₄²⁻, PO₄³⁻, BO₃³⁻,

C₂O₄²⁻, F⁻

(Spot tests should be carried out wherever feasible)

Section B: Physical Chemistry

(I) Surface tension measurement (use of organic solvents excluded).

a) Determination of the surface tension of a liquid or a dilute solution using a stalagmometer.

- b) Study of the variation of surface tension of a detergent solution with concentration.
- (II) Viscosity measurement (use of organic solvents excluded).
 - a) Determination of the relative and absolute viscosity of a liquid or dilute solution using an Ostwald's viscometer.
 - b) Study of the variation of viscosity of an aqueous solution with concentration of solute.
- (III) Chemical Kinetics

Study the kinetics of the following reactions.

- 3. Initial rate method: Iodide-persulphate reaction
- 4. Integrated rate method:
 - c. Acid hydrolysis of methyl acetate with hydrochloric acid.
 - d. Saponification of ethyl acetate.
 - e. Compare the strengths of HCl and H_2SO_4 by studying kinetics of hydrolysis of methyl acetate

Reference Books:

- A.I. Vogel, Qualitative Inorganic Analysis, Prentice Hall, 7th Edn.
- A.I. Vogel, Quantitative Chemical Analysis, Prentice Hall, 6th Edn.
- B.D. Khosla, Senior Practical Physical Chemistry, R. Chand & Co.